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ABSTRACT

Background: Climate change is projected to increase the frequency, intensity, and duration of heat waves
while reducing cold extremes, yet few studies have examined the relationship between temperature and
fetal health.

Objectives: We estimate the impacts of extreme temperatures on birth weight and gestational age in
Manhattan, a borough in New York City, and explore differences by socioeconomic status (SES).
Methods: We combine average daily temperature from 1985 to 2010 with birth certificate data in
Manhattan for the same time period. We then generate 33 downscaled climate model time series to
project impacts on fetal health.

Results: We find exposure to an extra day where average temperature <25 °F and > 85 °F during
pregnancy is associated with a 1.8 and 1.7 g (respectively) reduction in birth weight, but the impact
varies by SES, particularly for extreme heat, where teen mothers seem most vulnerable. We find no
meaningful, significant effect on gestational age. Using projections of temperature from these climate
models, we project average net reductions in birth weight in the 2070-2099 period of 4.6 g in the
business-as-usual scenario.

Conclusions: Results suggest that increasing heat events from climate change could adversely impact
birth weight and vary by SES.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Numerous studies have investigated the short- and long-run
problems associated with climate change, such as damages to
agriculture or reduced labor productivity (Intergovernmental Pa-
nel on Climate Change (IPCC), 2014; Graff Zivin and Neidell, 2013;
McMichael et al., 2006; Easterling et al., 2000). The impacts on
public health are also great, with a large literature associating heat
and cold waves with higher mortality rates (Lee et al., 2006; Bar-
reca, 2012; Barreca et al., 2012; Deschenes and Moretti, 2009;
Deschenes and Greenstone, 2011; Deschenes, 2012; Gosling et al.,
2009; Li et al., 2013; Gasparrini et al. 2015) and spontaneous fetal
death rates (Fukuda et al., 2014). However, a handful of studies
have begun to observe other possible climate-driven health out-
comes, such as poor fetal health, which previous work shows af-
fects later-life outcomes like educational attainment and income
(Almond, 2006; Black et al., 2007; Deschenes et al., 2009a; Van
Zutphen et al., 2012; Kent et al., 2014; Simenova, 2011). In fact, low
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birth weight and short gestation was responsible for 20% of deaths
for infants < 1 year old in 2011 in New York City (NYC) (NYC Dept.
of Health and Mental Hygiene, 2013). Consequently, NYC provides
a valuable setting for examining the relationship between tem-
perature and fetal health, not only due to its large urban popula-
tion of 8.4 million, but because temperatures in NYC increased by
approximately 1.5 °C between 1901 and 2011, which is greater
than global and US national trends (Horton et al., 2010; Inter-
governmental Panel on Climate Change (IPCC), 2014; U.S. Global
Change Research Program, 2013). Further, it is critical we under-
stand the public health implications of extreme heat events in
cities since they may be worsened by the urban heat island effect.
These vulnerabilities are recognized by the NYC government,
which has made climate change and public health related issues a
priority (NYC Office of the Mayor, 2014; Rosenzweig et al., 2011).

In this study, we investigate two timely and critical research
questions regarding climate change and public health. First, what
is the impact of maternal exposure to extreme temperatures on
fetal health and how might it vary by socioeconomic status (SES)?
Second, what are the projected impacts of climate change, via
higher temperatures, on fetal health? To address the former, we
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exploit the variation in maternal exposure to extreme tempera-
tures across years between 1985 and 2010 using micro-level data
with ample, detailed information on maternal characteristics for
the universe of births in Manhattan, a borough of NYC (Supple-
mentary material, Figs. A1-A2). We observe the effects of tem-
perature on important predictors of infant health: birth weight
and gestational age. We also explore differences among socio-
economic groups to determine the possibility of mitigating factors
(e.g., air conditioners (ACs)).

In examining the second question, we contribute to the grow-
ing understanding of the health impacts of climate change, which
is expected to increase the frequency and duration of heat waves
and reduce the occurrence of cold waves. A few studies have be-
gun to use a range of climate models to assess public health risks,
but to our knowledge, prior research has not applied this approach
to future birth outcomes (Li et al., 2013; Petkova et al., 2013). In
our study, we generated downscaled daily temperature outputs for
Manhattan using 33 climate models and two Representative
Concentration Pathways (RCPs): RCP4.5 (an emission scenario
consistent with transition to cleaner technologies) and RCP8.5 (a
business-as-usual (BAU) emission scenario). Using a suite of
models specifically for Manhattan, we can sample the climate-
driven range or uncertainty in future birth outcomes, which will
inform and motivate public health and climate change related
policies.

2. Methods
2.1. Data and measures

2.1.1. Birth certificate data

We used restricted birth certificate data from the New York City
Department of Health and Mental Hygiene (NYCDHMH) New York
City Vital Statistics (NYCVS) from 1985 to 2010. We obtained the
appropriate institutional review board approvals to access New
York City birth certificate data from the Bureau of Vital Statistics of
New York City's Department of Health and Mental Hygiene Vital
Statistics. This dataset includes the universe of births in Manhattan
and has information on the month and year of birth, detailed data
on infant health such as the dependent variables of interest which
are birth weight (g) and gestational age (weeks). It also has ample
information on maternal characteristics, including mother's age,
education, ethnicity, marital status, smoking status, and if she
participated in Aid to Families with Dependent Children (AFDC),
which is often used as a measure of income on birth certificate
data.

2.1.2. Weather data

We obtained data from the National Climatic Data Center using
the Global Historical Climatology Network (GHCN)-Daily database
which has information on minimum and maximum temperature
in Central Park, Manhattan. Taking the average of these two values,
we find average daily temperature.

2.1.3. Pollution data

We also collected daily ambient pollution data from the En-
vironmental Protection Agency since we include pollution as a
control variable in one of our sensitivity checks. Data were aver-
aged across all pollution monitors in NYC. Pollutants of interest
were SO,, CO, NO,, and PM;o between 1988 and 2005. We chose
this time period for consistency since PMo at pollution monitors
in NYC were not measured prior to 1988 and after 2005.

2.2. Statistical analysis and climate models

2.2.1. Regression analysis

To address our first research question, we estimate impacts of
maternal exposure to extreme and moderate temperatures on fetal
health and, for consistency, use a similar approach to a study by
Deschenes et al. (2009). The explanatory variable of interest is the
number of days of maternal exposure during different trimesters of
pregnancy to the following temperature bins: < 25 °F, 25-45 °F, 45—
65 °F, 65-85 °F, > 85 °F. Since we only have information on birth
month and birth year, we define the first trimester as the 8th’ 7th,
and 6th months prior to birth, the second trimester as the 5th, 4th,
and 3rd months prior to birth, and the third trimester as the 2nd and
1st month prior to birth and the birth month. For example, to de-
termine maternal exposure to extreme heat (T > 85 °F) in the third
trimester for a baby born July 12, 1990, we sum the number of days
in Manhattan where average T > 85 °F for May, June, and July 1990
(discussion of possible measurement error is discussed later in Sec-
tion 4.1). We use a regression framework to observe the relationship
between fetal health and temperature in Manhattan, where ample
daily weather data are available. We combine these weather data
with information on the universe of births in Manhattan from 1985
to 2010, which includes more than 500,000 births. On average in
Manhattan between 1985 and 2010, mothers were exposed to 10
days where average T < 25 °F and 3 days where average T> 85 °F
during their pregnancy. For more information on exposure to various
temperature bins, see Table A5 in the Supplementary material.

We exploit the variation in extreme temperature from year to
year which is plausibly exogenous to confounding variables com-
mon in observational studies, such as if the mother smokes, since
we assume it is difficult for mothers to predict years when ex-
treme temperatures will occur. Additionally, we control for de-
tailed maternal characteristics, seasonality of birth, and annual
trends. Our regression also addresses potential nonlinearities be-
tween temperature and fetal health by estimating impacts within
different temperature bins. We use the following baseline re-
gression:

4 4 4
healthimy = oo + ., B Tavg;,, + D B Tavg;y,, + Yy B Tavg;,,
j=1 j=1 j=1
+ I['Ximy + monthy + year, + eimy o))

where health;,, is birth weight (g) or gestational age (weeks) for
mother i who gives birth in month m and year y. The variable,
Tavgjm,, is the number of days a mother is exposed to average daily
temperature bin j ( < 25 °F, 25-45 °F, 65-85 °F, > 85 °F and 45-
65 °F is the omitted category) in trimester 1 (Tr1), trimester 2
(Tr2), and trimester 3 (Tr3). To account for important covariates, X
imy includes a dummy variable for infant's sex and dummy vari-
ables for mother's age (categorized by year), education (categor-
ized as <8 years, 9-11, 12, 13-14, 15, > 16, or unknown years
completed), ethnicity (categorized as Puerto Rican, Other Hispanic,
Asian and Pacific Islander, White Non-Hispanic, Black Non-His-
panic, Other, or unknown), marital status, if the mother smoked,
number of cigarettes smoked each week, number of previous de-
liveries, and if the mother participated in AFDC. The variable
month,, includes dummy variables for each birth month to control
for seasonality. Studies also suggest birth month is correlated to
maternal characteristics, so by including month,, we compare
mothers who give birth in the same month and mitigate omitted
variable bias (Strand et al., 2011a; Buckles and Hungerman, 2013).
Birth year trends, year,, are also included to account for annual
factors that change monotonically and g, is the error term.
Standard errors are clustered at the birth month-birth year level to
account for serial correlation within each birth month-birth year.
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The coefficient of interest is f;, which represents the change in
birth weight due to an extra day of exposure to temperature bin j
relative to the baseline category, 45-65 °F, in a given trimester. We
assume that the effects of temperature within each temperature
bin are the same (e.g., the impact on birth weight at 30 °F is
equivalent to the impact at 40 °F) and we expect at very high
temperatures, the impact of temperature on fetal health will be
negative, while the effect from colder temperatures is less clear in
the current literature. We then calculate the cumulative impact of
exposure to different temperature bins during the entire preg-
nancy by taking a linear combination of coefficients for each tri-
mester using the “lincom” command, which adjusts the standard
errors appropriately, in Stata version 13 (StataCorp, College Sta-
tion, Tex).

Missing observations of the dependent variables (birth weight
and gestational age) were dropped from the sample, which in-
cluded 0.2% and 0.7% (resp.) of observations. Observations with
missing temperature data during any part of the 9 months of
pregnancy were also dropped (2.4% of the observations). The final
sample size for analyses where birth weight or gestational age is
the outcome variable is 514,104 or 510,781 observations (resp.).
The sample sizes are different due to missing data for each
variable.

2.2.2. Downscaled climate models for Manhattan

To project impacts on birth outcomes in the future from ex-
posure to extreme temperatures, we use monthly bias-corrected
and spatially disaggregated (BCSD) climate projections at 1/8° re-
solution derived from the WCRP CMIP5 multi-model data set. The
BCSD projections were obtained online (Maurer et al., 2007). The
output from the land-based grid box corresponding to New York
City (Central Park), was used to create change factors at 1/8° re-
solution for each calendar month based on the difference between
each 30-year future time slice and the same GCM's 30-year
baseline time slice. These change factors are then applied to the
respective observed daily weather data to create a future projec-
tion with the same statistical characteristics and sequence as the
observations.

The approach described here does not explore how intra-an-
nual and inter-annual temperature variability may change. By not
considering sub-monthly changes in variability, we were able to
use fine-spatial-resolution projections (as the 1/8°BCSD product is
monthly, not daily). By applying the delta method separately for
each calendar month, we do capture one component of possible
changes in intra-annual variance, changes in the annual tem-
perature cycle. Previous studies have found changes in the annual
cycle to be important (Ballester et al.,, 2010). The BCSD metho-
dology yielded a set of 66 synthetic future temperature projections
for daily T mean from 2010 to 2100 based on the three 30-year
time slices, and for a baseline period 1971-2000.

The projections for future temperatures using downscaled
outputs from 33 global-scale general circulation models (GCMs)
and used in the Intergovernmental Panel on Climate Change Fifth
Assessment report, were developed in conjunction with two RCPs
(Taylor et al., 2012; Moss et al., 2010). RCPs are a set of climate
forcings (in Watts per meter) each consistent with different tra-
jectories of greenhouse gas and aerosol emissions, and land use
changes developed for the climate modeling community as a basis
for long-term and near-term climate modeling experiments. For
this analysis, we selected the two RCPs most used by the climate
modeling community, RCP 4.5 and RCP 8.5, which represent re-
latively low and high greenhouse gas projections (resp.). RCP 4.5 is
a scenario where greenhouse gas concentrations are eventually
stabilized this century, consistent with sharp emissions reduc-
tions. RCP 8.5 is consistent with increasing emissions over the
century or a BAU scenario. Increasing emissions are associated

with a high-energy intensity, high population growth, and slow
development of green technologies (such as renewable energy
sources and energy efficiency) pathway (Van Vuuren et al., 2011).
To the authors' knowledge, only two studies by Li et al. (2013) and
Petkova et al. (2013) used a suite of climate models for public
health purposes in New York City (NYC).

3. Results
3.1. Main regression analysis

Fig. 1 plots the coefficients (circles) and their standard errors
(bars) using Eq. (1) for birth weight, where the horizontal line is O.
Results in the first two trimesters follow an inverted U-shape,
where the impacts on birth weight are negative at the extreme
temperatures relative to more comfortable temperatures
(R?>=0.033). Specifically, we find a negative, significant effect for
mothers exposed to an extra day where average T < 25 °F in tri-
mester 1, where birth weight reduces by 0.8 g (p < 0.05) relative to
more comfortable temperatures. We then calculate the cumulative
impact during the entire pregnancy and find that exposure to an
extra very cold day reduces birth weight by 1.8 g (p <0.01). We
also find that exposure to an extra day of average T> 85 °F in
trimesters 1 and 2 reduces birth weight by 1.1 g (p < 0.10), where
the cumulative impact during the entire pregnancy is associated
with a reduction in birth weight of 1.7 g (p <0.10) (mean birth
weight is 3233 g with a standard deviation of 601 g). Finally, we
find a very small, significant reduction from exposure to an extra
day of extreme heat in trimester 1 on gestational age of 0.004
weeks or 46 min, but no significant cumulative impact (mean
gestational age is 39 weeks with a standard deviation of
2.4 weeks).

We focus the remainder of our analysis on birth weight since
the impact on gestational age is minor. For more information,
detailed tables and further discussion of the main results are
available in the Supplementary material, Table Al. In another re-
gression, we use Eq. (1) as a linear probability model (LPM), where
the dependent variable is a dummy variable if an infant is born
with low birth weight (i.e., birth weight < 2500 g). In the LPM, the
coefficient of interest, f3;, represents the change in probability of
having a low birth weight baby due to an extra day of exposure to
temperature bin j relative to the baseline category. Results are in
Table A1 column 3. We find that exposure to an extra day of
average temperature < 25°F or > 85 °F is associated with in-
creases in the probability of having an infant with low birth
weight by 0.0003 or 0.0005 (resp.). Finally, in another model, we
allow for more flexibility in Eq. (1) by adding squared and cubed
terms of birth year and results are in Table A1, column 5. Results
are similar to the main results in column 1, reinforcing the ro-
bustness of results.

3.2. Projected impacts of climate change

Based on the downscaled CMIP5 climate models, both RCPs
project a reduction in the number of cold days and an increase in
the number of hot days, implying that the net impact of climate
change on birth weight could be small since the effect from cold
waves may offset the impacts from heat waves (Supplementary
material, Fig. A3). To project impacts of climate change on birth
weight, we sum the number of days of exposure to average daily
T<25°F and > 85 °F for a 9 month pregnancy period for each
month-year for our baseline and projected study periods: 2010-
2039, 2040-2069, and 2070-2099. We then take the mean of the
total exposure within each study period, so we have average ex-
posure to very hot and cold temperatures during a 9 month
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Fig. 1. The impact of temperature on birth weight in Manhattan between 1985 and 2010. The reference category is 45 °F < T < 65 °F. The circle represents the coefficient and
the bars are the standard errors and the horizontal line is 0.
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Fig. 2. Changes in birth weight over the different projection periods for the 33 downscaled climate models for each scenario and study period from exposure to very hot
(Panel A) and cold (Panel B) temperatures. Panel C shows net changes in birth weight relative to the baseline period. The box symbols represent, from bottom to top, the
lower adjacent value, 25th percentile, median, 75th percentile, upper adjacent value and the dots are outside values. The horizontal line is 0.
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pregnancy for the baseline and projected study periods for each
model and climate scenario.

Next, to calculate the total projected change in birth weight
resulting from exposure to very hot or cold temperatures, we
multiply the average number of days when T> 85 °F or T< 25 °F
during a 9 month pregnancy for each climate model, scenario and
period by —1.7 g or — 1.8 g (resp.), which is the cumulative impact
on birth weight from exposure to an extra day of extreme heat or
cold found in our main results. We then determine the projected
net impact on birth weight for each model, scenario, and study
period by taking the difference between the projected change in
birth weight and the change in birth weight in the baseline period.

Fig. 2 is a box plot of the distribution of changes in birth weight
over the 33 downscaled climate models for each scenario and study
period from exposure to very hot and cold temperatures in Panels A
and B (resp.), and Panel C shows net changes in birth weight relative
to the baseline period. The box shows the 25th and 75th percentiles
and median (the middle line in the box). Initially in the 2010-2039
period, the mean net effect across models is 3.8 g and 3.7 g in the
RCP4.5 and RCP8.5 scenario (resp.). The positive net effects are due to
the reduction in the average number of cold days and smaller
number of very hot days. In the following 2040-2069 period, the
mean net projection for the RCP4.5 scenario remains the same, but
the BAU scenario decreases to 2.5 g, where both RCP4.5 and RCP8.5
scenarios include some models that predict a negative impact. Fi-
nally, in the last 2070-2099 period, the number of very hot days
increases dramatically and shows a mean net reduction in birth-
weight of 4.6 g in the BAU scenario, though a positive net effect re-
mains in the RCP4.5 scenario.

3.3. Other tests and sensitivity checks

We perform additional tests and sensitivity checks to further
explore our main results using Eq. (1) and address possible con-
cerns about our regression analysis. For more information, detailed
tables and further discussion of other tests and sensitivity checks
are in the Supplementary material, Tables A2-A4.

3.3.1. Differences by SES

Since our model exploits year-to-year variation in extreme
temperatures, we assume that the timing of birth is unlikely cor-
related to exposure since mothers are unable to predict years of
extreme heat or cold. In the baseline model in Eq. (1) we include
control variables (e.g., maternal characteristics) to reduce the
standard errors on coefficients since these variables are important
in predicting birth outcomes. We test the exogeneity of variation
in exposure to extreme temperatures by running the baseline re-
gression without maternal characteristics and expect similar
coefficients to our main results (Strand et al., 2011) (Table A1,
column 4). Using these models, we find statistically similar coef-
ficients to our main results (R>=0.009). However, we find a
spurious relationship between exposure to mild heat (i.e.,
65 °F < T < 85 °F) and reduction in birth weight.

We explore this relationship further using Eq. (1) and observe
impacts by SES, specifically mothers less than 18 years of age, have
less than 12 years of education, have at least a Bachelor's Degree,
are Hispanic, Black (non-Hispanic), or White (non-Hispanic).
Again, if annual variation to different temperatures is random,
then we expect comparable results across varying socioeconomic
groups. Results from these models show a consistently significant,
negative cumulative impact from exposure to extreme cold be-
tween —5 and —1.3 g. With respect to extreme heat, we find
statistically significant, negative impacts in trimester 2 between
—5.4 and -2 g for all categories except for Black and White mo-
thers and mothers with at least a Bachelor's degree.

3.3.2. Ambient pollution as a possibly confounding variable
Ambient pollution is a possibly confounding variable since the
literature suggests it is correlated to temperature and birth weight.
We include average ambient levels of SO,, CO, PM;q, and NO, from
1988 to 2005 in Manhattan during the entire 9 months of preg-
nancy using Eq. (1). This dramatically reduces our sample size
since pollution data are missing for many months and years
(N=249,035). Consequently, results may be less precisely esti-
mated due to the smaller sample size, however by adding relevant
covariates, standard errors may be smaller. After controlling for
pollution, results show a negative, but insignificant cumulative
impact similar to the main results from exposure to extremely hot
and cold temperatures during pregnancy. The insignificance of the
coefficient could be due to the smaller sample size noted earlier.

3.3.3. Smaller temperature bins

Third, results and methodologies in the related epidemiological
literature are often inconsistent due to difficulties in representing
exposure using a continuous variable since pregnancies occur
throughout different seasons (Strand et al., 2011). To circumvent
this, we use categorical variables in Eq. (1) to determine exposure
to different temperatures, however, the optimal temperature
thresholds or bins are currently unclear. We test different
thresholds and run Eq. (1), but use smaller temperature bins of a
size of 10 °F (i.e., T < 20 °F, 20-30 °F... 80-90 °F, T> 90 °F), where
50-60 °F is the reference category, and compare effects to the
main results. Similar to the main results, we find negative, sig-
nificant impacts from exposure between 80 and 90 °F in trimester
2 and where T < 20 °F in the first two trimesters. However, we also
find a positive, significant impact from exposure to an extra day
where T > 90 °F, which is surprising. It is important to note that
maximum exposure to T> 90 °F during pregnancy for this study
period was 2 days and average exposure was 0.2 day, making these
events very rare. Whereas average exposure to days where average
temperature was between 80 and 90 °F was 13 days. This suggests
the positive results for women exposed to T > 90 °F are driven by a
very small sample of anomalous events.

4. Discussion

The main results using Eq. (1) show statistically significant
decreases in birth weight resulting from exposure to extreme heat
and cold. The effects are modest, but to put these results in per-
spective, a study by Almond et al. (2005) shows that smoking
during pregnancy reduced birth weight by 200 g while another
study by Wahabi et al. (2013) associated maternal exposure to
secondhand smoke with a reduction in birthweight of 35g. In
which case, exposure to an extra week of extreme cold or heat is
approximately 4 or 5% (resp.) of the effect of smoking during
pregnancy on birth weight and 24% or 28% (resp.) of exposure to
secondhand smoke.

We also observed impacts by SES since some socioeconomic
groups could reduce their exposure to extreme temperatures by
indoor heating or cooling systems. We found similar impacts from
exposure to extreme cold across different SESs, but this is un-
surprising since exposure to very cold weather is easier to mitigate
in NYC, where the NYC Dept. of Housing Preservation and Devel-
opment's City Housing Maintenance Code requires building own-
ers to provide heat and hot water to all tenants year around;
otherwise tenants can file violations or complaints with the city
(NYC Dept. of Housing Preservation and Development, 2014). This
result suggests that despite access to heated buildings, the effect
from cold weather may be difficult to overcome.

However, we found differences by SES when examining im-
pacts of exposure to extreme heat. These findings may reflect the
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fact that building owners are not required to provide any cooling
mechanism for tenants. Additionally, the effect is exacerbated for
teen mothers, who experience the greatest reductions in birth
weight from exposure to extreme heat. A possible explanation is
that teen mothers are more likely to be outdoors and in school
relative to older, working mothers who may have more access to
ACs or fans to mitigate their exposure. Also, three groups did not
experience any impact from exposure to extreme heat. Two of
these groups, specifically White or college-educated mothers, are
typically considered of a higher SES, in which case they could
possibly afford to mitigate their risk of exposure by purchasing an
AC, for example. However, using these datasets we cannot directly
test for these mitigating factors, nor do we have information re-
garding occupation, so the evidence is speculative at best.

Deschenes et al. (2009) find statistically significant modest
reductions in birth weight from exposure to extreme temperatures
between 0.003 and 0.009% per day, especially in the second and
third trimesters. Our results show statistically significant impacts
from exposure to extreme heat during Trimester 2 only, though
the cumulative impact throughout pregnancy is also significant.
Overall, our results show modest decreases in birth weight from
exposure to extreme heat, which are in line with the findings in
the Deschenes et al. (2009) study.

We then address our second research question regarding pro-
jected changes in birth weight resulting from climate change using
results from several climate model simulations for NYC specifi-
cally. Mean net projected impacts in the 2070-2099 period sce-
nario suggest a net reduction in birth weight for the RCP8.5 or BAU
scenario, while the effect in the RCP4.5 (lower emissions) scenario
remains positive and similar to the previous periods' predictions.
This suggests that if action is taken early enough to decrease
emissions of long-lived greenhouse gases, the impact on fetal
health could be minimized.

4.1. Limitation: measurement error

One of the primary limitations to this study is not having exact
birth dates, but only birth months and years. Consequently, we
measure exposure to temperature during pregnancy with some
measurement error. We determine exposure to extreme tem-
peratures by summing the number of days of exposure for the
month and year of birth and the 8 months prior. For example, if a
mother gave birth July 3, 1990 and another mother gives birth July
20, 1990, in the data it only appears as July 1990. However, the
mother who gave birth earlier in the month may have experienced
different exposure to extreme heat or cold. Although we have in-
formation on gestational age, we can only estimate maternal ex-
posure within 4 weeks since we do not know the exact birth week.
We consider which direction this measurement error could bias
our results. First, if the measurement error is systematic, we could
possibly overestimate impacts. For example, mothers who give
birth later in the month and perhaps experience more exposure to
extreme heat may be systematically different from mothers who
give birth earlier in the month. Second, if the measurement error
is random or noise, then it is a “classical measurement error,”
which standard models show bias estimates toward zero or the
null hypothesis and potentially underestimate the true effect
(Wooldridge, 2002).

Regarding the former, there is a large literature on the re-
lationship between birth month and later-life out comes, such as
income, health, and education. A study by Buckles and Hungerman
(2013) suggests birth month, which we control for, is correlated to
maternal characteristics and that weather at the expected time of
birth was a driving factor. To the authors' knowledge, the corre-
lation between birth week and maternal characteristics is less
clear, though since the long-term average temperature differences

between two calendar weeks in the same month are generally
smaller than the average temperature differences from one month
to the next, this bias, if any, is likely small. This suggests the
measurement of exposure is estimated with classical measure-
ment error and would bias results to zero.

5. Conclusion

Our research shows that exposure to extreme heat and cold
affects birth weight, though we find no meaningful, significant
impact on gestational age. We explore the relationship further and
find impacts on birth weight from maternal exposure to extreme
heat differ across SES, while the effect from exposure to extreme
cold is persistent across different socioeconomic groups. Using
detailed information from downscaled climate models, we find
that early action to limit climate change by reducing greenhouse
gas emissions could minimize adverse effects. This work demon-
strates the potential for further incorporation of climate projec-
tions into public health and policy research.

Further understandings of the biological mechanisms linking
birth outcomes and climate change, as well as the utility of miti-
gating factors, like ACs, remain areas of future research since we are
unable to directly test for these in our study. However, this in-
formation would be highly valuable for climate change adaptation.
Future work includes merging climate and health data with in-
formation on possibly mitigating factors to extreme temperatures or
climate change, such as household information on AC use or time
spent working outside during pregnancy, overall health, and long-
term physiological adaptation to higher temperatures. We would
expect households with ACs or pregnant mothers who worked in-
doors all day to experience a smaller effect on birth weight.

Additionally, we base these estimates on a few assumptions.
We assume that the size of a birth cohort in 2009 will be the same
as in 2070, however, it is likely population will increase in the next
few decades, suggesting this is a conservative estimate. However,
individuals may also adapt to climate change via ACs, so the total
number of mothers affected could decrease over time, assuming
no major changes in energy expenses. Other factors, like changes
in healthcare or access to healthcare or possible educational
campaigns may also alter these economic estimates.
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